Real-time measurement of PMA-induced cellular alterations by microelectrode array-based impedance spectroscopy.
نویسندگان
چکیده
For a feasible and cost-effective impedance measurement of cellular alterations in real-time, we combined commercially available microelectrode arrays (MEAs), consisting of 60 microelectrodes, with a conventional impedance analyzer. For proof of principle, a breast carcinoma cell line (MCF-7) was cultured on MEAs, and cellular alterations were measured by impedance spectroscopy at a frequency ranging from 10 Hz to 1 MHz. Cells were stimulated with phorbol 12-myristate 13-acetate (PMA) at different concentrations to activate protein kinase C (PKC)-mediated extra- and intracellular changes. By addition of 0.03 microM PMA, an increase of the relative impedance (Z(rel)) was observed after 10 min with a maximum at 1 kHz. Moreover a gradual elevation of the impedance was measured 60 min after stimulation with PMA. If 0.3 microM PMA was applied, the maximal amplitude of the relative impedance after 60 min shifted from 1 kHz (0.03 microM PMA) to 150 Hz. Subsequently, the impedance was further increased up to 90 min after PMA application, after which the impedance reduced after 240 min. Since we could use MEAs for at least 10 times without affecting the sensitivity, our study revealed that commercially available MEAs comprising nanocolumnar titanium nitrite electrodes are suitable microstructures for a highly reproducible and cost-effective multisite measurement of intracellular processes by impedance spectroscopy.
منابع مشابه
Real-time Cellular Impedance Analysis System
The cell impedance analysis technique is a label-free, non-invasive method, which simplifies sample preparation and allows applications requiring unmodified cell retrieval. However, traditional impedance measurement methods suffer from various problems (speed, bandwidth, accuracy) for extracting the cellular impedance information. This thesis proposes an improved system for extracting precise c...
متن کاملMeasuring Impedance of Tissues Using a Microfabricated Microelectrode Array
This thesis looks at the possibility of using impedance spectroscopy for differentiating tissue, using a microelectrode array (MEA). The thesis first discusses the background and the motivation for this thesis. It covers the certain basic concepts of the human skin starting from
متن کاملCortical signal recording using an economical microelectrode fabricated on printed circuit board
This work presents a simple, flexible and economical microwire array electrode for extracellular cortical recordings. The proposed procedure is relatively simple, even for a novice worker to implement in-house. These main steps include design and sculpturing PCB, straightening microwires, connecting PCB pattern, arraying and soldering microwires and packaging the microelectrode. A practiced res...
متن کاملImproved Cellular Analysis for the Early Detection of Compound-Induced Hepatic Cytotoxicity to Reduce Animal Testing
Most conventional cell-based in vitro assays for the assessment of cell viability and cytotoxicity are disruptive endpoint assays requiring cell lysis. A non-invasive and label-free way to continuously monitor cellular behavior can now be achieved using the xCELLigence System of Real-Time Cell Analyzers (RTCA) co-developed by Roche and ACEA Biosciences (2). xCELLigence RTCA SP, MP and DP Instru...
متن کاملA quantitative study of detection mechanism of a label-free impedance biosensor using ultrananocrystalline diamond microelectrode array.
It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioTechniques
دوره 41 4 شماره
صفحات -
تاریخ انتشار 2006